Abstract

For modeling approaches in systems biology, knowledge of the absolute abundances of cellular proteins is essential. One way to gain this knowledge is the use of quantification concatamers (QconCATs), which are synthetic proteins consisting of proteotypic peptides derived from the target proteins to be quantified. The QconCAT protein is labeled with a heavy isotope upon expression in E. coli and known amounts of the purified protein are spiked into a whole cell protein extract. Upon tryptic digestion, labeled and unlabeled peptides are released from the QconCAT protein and the native proteins, respectively, and both are quantified by LC-MS/MS. The labeled Q-peptides then serve as standards for determining the absolute quantity of the native peptides/proteins. Here, we have applied the QconCAT approach to Chlamydomonas reinhardtii for the absolute quantification of the major proteins and protein complexes driving photosynthetic light reactions in the thylakoid membranes and carbon fixation in the pyrenoid. We found that with 25.2 attomol/cell the Rubisco large subunit makes up 6.6% of all proteins in a Chlamydomonas cell and with this exceeds the amount of the small subunit by a factor of 1.56. EPYC1, which links Rubisco to form the pyrenoid, is eight times less abundant than RBCS, and Rubisco activase is 32-times less abundant than RBCS. With 5.2 attomol/cell, photosystem II is the most abundant complex involved in the photosynthetic light reactions, followed by plastocyanin, photosystem I and the cytochrome b6/f complex, which range between 2.9 and 3.5 attomol/cell. The least abundant complex is the ATP synthase with 2 attomol/cell. While applying the QconCAT approach, we have been able to identify many potential pitfalls associated with this technique. We analyze and discuss these pitfalls in detail and provide an optimized workflow for future applications of this technique.

Highlights

  • Chlamydomonas reinhardtii has been used since many decades as a model system to study various aspects of cell biology (Harris, 2008)

  • This approach has already been applied to Chlamydomonas: in one study, PSI-LHCI complexes were isolated from Chlamydomonas cells that had been metabolically labeled by feeding an arginineauxotrophic strain with 13C-arginine

  • The disadvantages are the cost of the synthetic peptides, especially if they need to be synthesized with stable isotopes for a large number of target proteins, and the difficulty to quantify these peptides accurately, because of their tendency to irreversibly adhere to vessel walls (Brownridge et al, 2011)

Read more

Summary

Introduction

Chlamydomonas reinhardtii has been used since many decades as a model system to study various aspects of cell biology (Harris, 2008). Isotope-labeled peptides were spiked into extracts from unlabeled Chlamydomonas cells to determine absolute abundances of proteins involved in a variety of cellular processes (Wienkoop et al, 2010; Recuenco-Munoz et al, 2014). The advantage of these approaches is that they allow the absolute quantification of several target proteins in a single MS run. The disadvantages are the cost of the synthetic peptides, especially if they need to be synthesized with stable isotopes for a large number of target proteins, and the difficulty to quantify these peptides accurately, because of their tendency to irreversibly adhere to vessel walls (Brownridge et al, 2011)

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call