Abstract
Musicians have considerable experience naming pitch-classes with verbal (e.g., Doh, Ré, and Mi) and semiotic tags (e.g., musical notation). On the one end of the spectrum, musicians can identify the pitch of a piano tone or quality of a chord without a reference tone [i.e., absolute pitch (AP) or relative pitch], which suggests strong associations between the perceived pitch information and verbal labels. Here, we examined the strength of this association using auditory versions of the Stroop task while neuro-electric brain activity was measured using high-density electroencephalography. In separate blocks of trials, participants were presented with congruent or incongruent auditory words from English language (standard auditory Stroop), Romanic solemnization, or German key lexicons (the latter two versions require some knowledge of music notation). We hypothesized that musically trained groups would show greater Stroop interference effects when presented with incongruent musical notations than non-musicians. Analyses of behavioral data revealed small or even non-existent congruency effects in musicians for solfège and keycodes versions of the Stroop task. This finding was unexpected and appears inconsistent with the hypothesis that musical training and AP are associated with high strength response level associations between a perceived pitch and verbal label. The analyses of event-related potentials revealed three temporally distinct modulations associated with conflict processing. All three modulations were larger in the auditory word Stroop than in the other two versions of the Stroop task. Only AP musicians showed significant congruity effects around 450 and 750 ms post-stimulus when stimuli were presented as Germanic keycodes (i.e., C or G). This finding suggests that AP possessors may process alpha-numeric encodings as word forms with a semantic value, unlike their RP possessing counterparts and non-musically trained individuals. However, the strength of musical conditional associations may not exceed that of standard language in speech.
Highlights
Musicians have considerable experience naming pitch-classes with verbal and semiotic tags
The present study shows that musicians, even those with absolute pitch (AP), exhibited little interference effect at the behavioral level in the two musical versions of the Stroop task
The analyses of eventrelated potentials (ERPs) data show a significant difference between congruent and incongruent in the Germanic keycodes for AP, unlike in the relative pitch (RP) or NM groups for this task
Summary
Musicians have considerable experience naming pitch-classes with verbal and semiotic tags. A small subset of musicians possesses linguistic tags for decoding pitch-classes into verbal codes or symbols without having to resort to an external reference pitch. This ability to name pitches without a referent is called absolute pitch (AP). Most musicians do not have AP and instead require an external pitch-class to be presented and maintained in working memory as a reference to compare a subsequent pitch-class in order to label it. This more common ability is referred to as relative pitch (RP), which is the ability to label the intervals between pitches. While AP musicians can name pitch categories without any external referent, RP musicians can name pitch categories once a reference pitch is provided
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.