Abstract

A quick and inexpensive method to determine absolute nannofossil abundance in deep sea sediments – the “drop” technique (modified dilution method) – was compared to two other available methods – the filtration and random settling techniques. All techniques rely on the same basic principle, under which a volume of known concentration (bulk sediment weight/mL) is distributed evenly over a known total area (glass slide or filter) to then count particles within a set of (randomly) selected fields of view. The three preparation techniques were also calibrated by spiking the samples with microbeads to approach the “real values” as closely as possible. Significant offsets in abundance estimates between methods mainly reflect bias due to the uneven distribution and/or loss of particles. We show that the drop technique is most consistent and accurate in estimating “real values” and offers similar or better reproducibility than the other techniques. The drop method also allows detection of the same trends with or without calibration with microbeads. The filtration method holds the risk to drastically underestimate absolute abundances, while the settling technique is demanding in terms of time and may suffer from advection processes. The composition of nannofossil assemblages can be reliably determined by any of the three different techniques.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call