Abstract

The problem of absolute measurements of radiation damage in films of nanometer thicknesses is addressed. Thin films of DNA (∼2-160 nm) are deposited onto glass substrates and irradiated with varying doses of 1.5-keV X-rays under dry N(2) at atmospheric pressure and room temperature. For each different thickness, the damage is assessed by measuring the loss of the supercoiled configuration as a function of incident photon fluence. From the exposure curves, the G-values are deduced, assuming that X-ray photons interacting with DNA deposit all of their energy in the film. The results show that the G-value (i.e. damage per unit of deposited energy) increases with film thickness and reaches a plateau at 30±5 nm. This thickness dependence provides a correction factor to estimate the actual G-value for films with thicknesses <30 nm thickness. Thus, the absolute values of the damage can be compared with that of films of any thickness under different experimental conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.