Abstract

A novel method of gauge block measurement without wringing onto a glass platen is proposed. By using tandem low-coherence interferometry to perform remote measurements, wringing is rendered unnecessary. To measure its length, a gauge block for measurement without wringing is set several millimeters above a glass platen that is positioned on a triangle interferometer such that the distances between the surfaces of the block and the reflection surface of the platen can be measured from opposite directions. By using tandem low-coherence interferometry with a He–Ne laser as a reference length standard, gauge blocks with nominal lengths of 5, 10 and 75 mm have been measured remotely with an expanded uncertainty of about 86 nm.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call