Abstract

The linearity-of-response characteristics of a photovoltaic (PV) HgCdTe detector were investigated at a number of wavelengths in the infrared, using the NPL linearity of detector response characterization facility. The measurements were performed with the test detector operating under conditions identical to those in which the detectors will be used in typical infrared radiometric applications. The deviation from linearity in the generated photocurrent was shown to be strongly dependent on the area of the detector being illuminated. Plots of the linearity factor versus generated photocurrent for different illuminated wavelengths were shown to overlap. The linearity factor was shown to be a function of the photon irradiance of the illuminating beam. This behaviour was similar to that exhibited by photoconductive (PC) HgCdTe detectors, indicating that Auger recombination was the dominant source of the deviation from linearity observed in the test detector.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call