Abstract
Absolute Hugoniot measurements for empty plastic foams at ∼10% of solid polystyrene density and supporting rad-hydro simulation results are reported. Planar foam slabs, ∼400 μm thick and ∼500 μm wide, some of which were covered with a 10 μm solid plastic ablator, were directly driven by 4 ns long Nike krypton-fluoride 248 nm wavelength laser pulses that produced strong shock waves in the foam. The shock and mass velocities in our experiments were up to 104 km/s and 84 km/s, respectively, and the shock pressures up to ∼9 Mbar. The motion of the shock and ablation fronts was recorded using side-on monochromatic x-ray imaging radiography. The steadiness of the observed shock and ablation fronts within ∼1% has been verified. The Hugoniot data inferred from our velocity measurements agree with the predictions of the SESAME and CALEOS equation-of-state models near the highest pressure ∼9 Mbar and density compression ratio ∼5. In the lower pressure range 2–5 Mbar, a lower shock density compression is observed than that predicted by the models. Possible causes for this discrepancy are discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Physics of Plasmas
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.