Abstract

A new sampling-free and calibration-free multi-channel hygrometer using near infrared (NIR) tunable diode laser absorption spectroscopy (TDLAS) at 1.37 μm was developed and used to determine absolute transpiration rates of single plant leafs. Four 8×6× 4 cm3, fiber-coupled absorption cells are used to simultaneously measure absolute water vapor concentrations with an absolute accuracy of about 5% and a temporal resolution of about 2 s. Two chambers (BOTTOM, TOP) are directly attached to the leaf surface, while two chambers (IN, OUT) analyze the purge gas supplied to the plant leaf and the total outflow of the leaf chambers. The BOTTOM–TOP comparison provided a direct, leaf-side resolved ratio of stomatal conductance and–by taking into account the purge gas flow and the leaf area exposed–leaf side resolved water transpiration rates. The OUT–IN-difference yielded the total leaf transpiration rate with 2 μmol/m2/s resolution. The new multi-point hygrometer was validated by monitoring of the transpiration dynamics of a plant of the species Epipremnum pinnatum (L.) Engl. during diurnal variation of the leaf irradiation. During these experiments the differential H2O concentration resolution between two chambers was determined to be better than 3 ppm at Δt= 2 s (i.e. better than 711 ppb m Hz1/2). This performance was verified by an Allan analysis over a 30 min time period using CH4 as a surrogate absorber and yielded an average optimum optical resolution of 4.9×10-6 for 83 s measurement time, i.e. a CH4 resolution of 892 ppb, which corresponds to the optical resolution needed for a water sensitivity of 454 ppb m Hz1/2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.