Abstract

We demonstrate a nondynamical Monte Carlo method to compute free energies and generate equilibrium ensembles of dense fluids. In this method, based on step-by-step polymer growth algorithms, an ensemble of n+1 particles is obtained from an ensemble of n particles by generating configurations of the n+1st particle. A statistically rigorous resampling scheme is utilized to remove configurations with low weights and to avoid a combinatorial explosion; the free energy is obtained from the sum of the weights. In addition to the free energy, the method generates an equilibrium ensemble of the full system. We consider two different system sizes for a Lennard-Jones fluid and compare the results with conventional Monte Carlo methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.