Abstract

While fluorescence microscope systems remains an essential tool in modern biology and medical work, no compact instrumentation has been developed for the rapid calibration of such systems. Almost invariably results are presented in terms of the [AU], "arbitrary units". To remedy this situation we have developed a small, portable instrument - the size of a microscope slide - that uses low-power LEDs at different wavelengths to produce calibrated amounts of light. A computer controls the instrument--through a USB connector--so that the current to the selected LED can be swept through an increasing range of values. The amount of light measured by the microscope's total imaging system (lenses, filters, EO sensor, and digitizer) is then recorded to provide a "current in, digital value out" calibration. Further, the current can be translated easily to optical power and thus photons per second at the chosen LED wavelength. We have built and programmed such a system, tested it for accuracy and precision, and used it to calibrate several microscopes and microscope/lens combinations. The results will be presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.