Abstract
This paper is concerned with the problems of absolute exponential stability and stabilization for a class of switched nonlinear systems whose system matrices are Metzler. Nonlinearity of the systems is constrained in a sector field, which is bounded by two odd symmetric piecewise linear functions. Multiple Lyapunov functions are introduced to deal with the stability of such nonlinear systems. Compared with some existing results obtained by the common Lyapunov function approach in the literature, the conservatism of our results is reduced. All present conditions can be solved by linear programming. Furthermore, the absolute exponential stabilization for the considered systems is designed by the state-feedback and average dwell time switching strategy. Two examples are also given to illustrate the validity of the theoretical findings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.