Abstract
Previous reports have indicated the anomalous excitation rate for the 6.2keV nuclear level of Ta181 in a plasma produced with a femtosecond laser. A detailed characterization of the electrons and x-ray sources produced in such a plasma is required to interpret these results. In a preliminary work, the continuous energy distribution of hard x rays (10–500keV) produced in the interaction of a kilohertz femtosecond laser beam with a tantalum solid target is investigated in the 3×1015–6×1016W∕cm2 range of intensity. A sodium iodide detector with appropriate shielding is used. Strong collimation and absorption filters are used to avoid the pileup of photons in the detector. The response function of this setup is calculated with the GEANT3 simulation code. We demonstrate the necessity to quantify the Compton scattered events in the raw spectra in order to restore the absolute x-ray energy distribution.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.