Abstract

This work presents a thorough guide to procedures for absolute electrochemiluminescence (ECL) quantum efficiency (ΦECL) measurements, which if employed effectively should raise the research impact of ECL studies for any luminophore. Absolute measurements are not currently employed in ECL research. Instead, ECL efficiencies have been determined relative to Ru(bpy)32+ under similar conditions, regardless of whether the conditions are favorable for Ru(bpy)32+ emissions or not. In fact, the most cited Ru(bpy)32+ ΦECL is from the pioneering work by the Bard research group in 1973 by means of a rotating ring-disk electrode revolving at 52 rotations per second measured with a silicon photodiode. Our presented technique uses a common disk electrode, spectrometer, and photomultiplier tube to measure the ΦECL. The more common light detection hardware and electrodes combined with an in-depth calculation walkthrough will provide ECL researchers the necessary tools to implement ΦECL measurement procedures in their own laboratories. Following a facile instrument setup and calculation, a systematic study of Ru(bpy)32+ ΦECL finds comparable results to those performed by Bard and co-workers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.