Abstract

Absolute distance measurement based on optical feedback using a single-frequency Yb:Er glass laser is demonstrated via the combination of heterodyne detection and frequency sweep. The technique allows for the enhancement of the sensitivity of the laser response to self-mixing thanks to resonant excitation close to the relaxation-oscillation frequency peak. The experimental results on noncooperative targets are in good agreement with the theory, and the shape of the resulting signal is analyzed in both the temporal and the frequency domains considering the specific dynamic of the class B solid-state laser. Suggestions are provided for further improvements on the signal processing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.