Abstract

Absolute cross section (CS) data on the interaction of low energy electrons with DNA and its molecular constituents are required as input parameters in Monte-Carlo type simulations, for several radiobiological applications. Previously [V. Lemelin et al., J. Chem. Phys. 144, 074701 (2016)], we measured absolute vibrational CSs for low-energy electron scattering from condensed tetrahydrofuran, a convenient surrogate for the deoxyribose. Here we report absolute electronic CSs for energy losses of between 6 and 11.5 eV, by electrons with energies between 11 and 16 eV. The variation of these CSs with incident electron energy shows no evidence of transient anion states, consistent with theoretical and other experimental results, indicating that initial electron capture leading to DNA strand breaks occurs primarily on DNA bases or the phosphate group.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.