Abstract

We show that in many parametrized families of self-similar measures, their projections, and their convolutions, the set of parameters for which the measure fails to be absolutely continuous is very small - of co-dimension at least one in parameter space. This complements an active line of research concerning similar questions for dimension. Moreover, we establish some regularity of the density outside this small exceptional set, which applies in particular to Bernoulli convolutions; along the way, we prove some new results about the dimensions of self-similar measures and the absolute continuity of the convolution of two measures. As a concrete application, we obtain a very strong version of Marstrand's projection theorem for planar self-similar sets.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.