Abstract
We present the Girsanov theorem for a non linear Ito equation in an infinite dimensional Hilbert space with a non linearity of polynomial growth and an infinite dimensional additive noise. We assume a condition weaker than Novikov one, as done by Mikulevicius and Rozovskii in the study of more general stochastic PDE's. The equivalence of the laws of the linear equation and of the non linear equation implies results on weak solutions and on invariant measures for the given non linear equation. Two examples are presented: a stochastic Kuramoto-Sivashinsky equation and a stochastic hyperviscosity-regularized Navier-Stokes equation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.