Abstract

Glyoxal and methylglyoxal are two endogenous and mutagenic 1,2-dicarbonyl compounds, which can readily form adducts with guanosine. The molecular structures of cyclic guanosine-glyoxal (G-g) and guanosine-methylglyoxal (G-mg) mono-adducts have been extensively studied before. However, diastereoisomers of these adducts have not yet been studied in detail. In this work, one pair of G-g and two pairs of G-mg diastereoisomers were baseline separated by reverse phase HPLC, whose structures were identified as the previously reported cyclic forms, and their absolute configurations were determined by circular dichroism, the octant rule, and molecular modeling. According to the HPLC elution order, configurations of two G-g (as well as trans G-mg) were (6R,7R) and (6S,7S), respectively. Meanwhile, the stability of each isomer in neutral solution was also investigated, which revealed the stability order G-g > cis G-mg > trans G-mg and also indicated distinct transformation processes for different G-mg configurations. Trans G-mg only racemized between each other, while cis G-mg transformed to both cis and trans forms. Different intermediates in the racemization processes were proposed to explain the observations. These results may shed light on further understanding the roles of these two small molecules in mutagenesis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.