Abstract
Water often plays a key role in mediating protein-ligand interactions. Understanding contributions from active-site water molecules to binding thermodynamics of a ligand is important in predicting binding free energies for ligand optimization. In this work, we tested a non-equilibrium switching method for absolute binding free energy calculations on water molecules in binding sites of 13 systems. We discuss the lessons we learned about identified issues that affected our calculations and ways to address them. This work fits with our larger focus on how to do accurate ligand binding free energy calculations when water rearrangements are very slow, such as rearrangements due to ligand modification (as in relative free energy calculations) or ligand binding (as in absolute free energy calculations). The method studied in this work can potentially be used to account for limited water sampling via providing endpoint corrections to free energy calculations using our calculated binding free energy of water.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.