Abstract
Using the finite element method (FEM), we investigate the existence of absolute band gaps and localized modes associated with a guide in thin films of phononic crystals. Two different structures based on two-dimensional (2D) phononic crystals are considered, namely a free standing plate and a plate deposited on a silicon substrate. The 2D phononic crystal is constituted by a square array of cylindrical holes drilled in an active piezoelectric PZT5A matrix. We demonstrate the existence of absolute band gap in the band structure of the phononic crystal plate and, then, the possibility of guided modes inside a linear defect created by removing one row of air holes. In the case of the supported plate, we show the existence of an absolute forbidden band in the plate modes when the thickness of the substrate significantly exceeds the plate thickness.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Photonics and Nanostructures - Fundamentals and Applications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.