Abstract

Circularly polarized light (CPL) is an inherently chiral entity and is regarded as one of the possible deterministic signals that led to the evolution of homochirality in earth. Thus, CPL as an external physical field has been widely used in a technique known as absolute asymmetric synthesis, because a product enriched in one enantiomer is formed from racemic precursor molecules without the intervention of a chiral catalyst. In this review, we retrospect the historical research of CPL-induced absolute asymmetric synthesis, including chiral organic molecules, helical polymers, supramolecular assemblies, noble metal nanostructures. However, based on these results, we concluded that the chiral photon-matter interaction is very faint due to the arrangement of molecular bonds giving rise to chiral features, is over a smaller distance than the helical pitch of CPL, leading extremely small enantiomeric excess for product. Therefore, we highlight the recently emerged technology called superchiral field, in which the superchiral far-field and near-field could enhance the dissymmetry of optical field and near-field, respectively. In sum, we hope this review could bring some enlightenment to researchers and further improve the enantioselectivity of CPL-induced absolute asymmetric synthesis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call