Abstract

We analyse the absolute and convective instabilities of, and spatially amplifying waves in, semi-bounded spatially developing flows and media by applying the Laplace transform in time to the corresponding initial-value linear stability problem and treating the resulting boundary-value problem on ℝ+ for a vector equation as a dynamical system. The analysis is an extension of our recently developed linear stability theory for spatially developing open flows and media with algebraically decaying tails and for fronts to flows in a semi-infinite domain. We derive the global normal-mode dispersion relations for different domains of frequency and treat absolute instability, convectively unstable wave packets and signalling. It is shown that when the limit state at infinity, i.e. the associated uniform state, is stable, the inhomogeneous flow is either stable or absolutely unstable. The inhomogeneous flow is absolutely stable but convectively unstable if and only if the flow is globally stable and the associated uniform state is convectively unstable. In such a case signalling in the inhomogeneous flow is identical with signalling in the associated uniform state.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.