Abstract

The transcription factor Nrf2 (NF-E2-related-factor 2) is essential for the oxidative and electrophilic stress responses. Keap1 (Kelch-like-ECH-associated-protein 1), an adaptor for a cullin-3 (Cul3)-based ubiquitin ligase, regulates Nrf2 activity through proteasomal degradation, and acts as a sensor for oxidative and electrophilic stresses. The Keap1-Cul3 complex is a critical regulator of the cellular Nrf2 level, and yet quantitative information regarding their endogenous intracellular concentrations in homeostatic conditions and during stress responses is unknown. We analyzed the absolute amounts of the Nrf2, Keap1, and Cul3 proteins in five murine cell lines by comparison with serial dilutions of purified recombinant protein standards in combination with quantitative immunoblot analyses. In the basal state, the amount of Nrf2 was maintained at lower levels than those of Keap1 and Cul3 proteins, whereas the electrophilic agent diethylmaleate dramatically increased Nrf2 to a level greater than that of Keap1 and Cul3, resulting in the accumulation of Nrf2 in the nucleus. In contrast, Keap1 and Cul3 did not display any changes in their abundance, subcellular localization, or interaction in response to electrophilic stimuli. Our results demonstrate that the regulation of the Nrf2 protein level during stress responses is mediated by the activity but not the composition of the Nrf2-Keap1-Cul3 complex.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.