Abstract
We present a simple yet effective pipeline for absolute three-dimensional (3D) human pose estimation from two-dimensional (2D) joint keypoints, namely, the 2D-to-3D human pose lifting problem. Our method comprises two simple baseline networks, a 3D conversion function, and a correction network. The former two networks predict the root distance and the root-relative joint distance simultaneously. Given the input and predicted distances, the 3D conversion function recovers the absolute 3D pose, and the correction network reduces 3D pose noise caused by input uncertainties. Furthermore, to cope with input noise implicitly, we adopt a Siamese architecture that enforces the consistency of features between two training inputs, i.e., ground truth 2D joint keypoints and detected 2D joint keypoints. Finally, we experimentally validate the advantages of the proposed method and demonstrate its competitive performance over state-of-the-art absolute 2D-to-3D pose-lifting methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.