Abstract

We examine noncommutative Chern-Simons theory on a bounded spatial domain. We argue that upon `turning on' the noncommutativity, the edge observables, which characterized the commutative theory, move into the bulk. We show this to lowest order in the noncommutativity parameter appearing in the Moyal star product. If one includes all orders, the Hamiltonian formulation of the gauge theory ceases to exist, indicating that the Moyal star product must be modified in the presence of a boundary. Alternative descriptions are matrix models. We examine one such model, obtained by a simple truncation of Chern-Simons theory on the noncommutative plane, and express its observables in terms of Wilson lines.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.