Abstract

The deoxyribonucleic acid (DNA)-degrading potential of metronidazole was evaluated in vitro by three techniques: determination of melting curve, measurement of viscosity, and centrifugation in neutral or alkaline sucrose gradients. Studies were performed on calf thymus DNA and on (3)H-labeled or unlabeled pneumococcal and T7 phage DNA after treatment with metronidazole alone or metronidazole reduced by sodium dithionite in the presence of DNA. This latter process is known to elicit covalent binding of metronidazole to DNA. Reduced or unreduced metronidazole had no effect on the melting properties, viscosity, or sedimentation velocity of the nucleic acids studied. Sodium dithionite alone, however, caused a 25% decrease in the intrinsic viscosity of pneumococcal DNA, and decreased the sedimentation velocity of pneumococcal and T7 phage DNA in both neutral and alkaline sucrose gradients. These data suggest that degradation of DNA is not important in the interaction of metronidazole with nucleic acids, an interaction assumed relevant to the cytotoxic, radiosensitizing, and mutagenic activities of this compound.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.