Abstract
Particle models with finitely many types of particles are considered, both on ℤ d and on discrete point sets of finite local complexity. Such sets include many standard examples of aperiodic order such as model sets or certain substitution systems. The particle gas is defined by an interaction potential and a corresponding Gibbs measure. Under some reasonable conditions on the underlying point set and the potential, we show that the corresponding diffraction measure almost surely exists and consists of a pure point part and an absolutely continuous part with continuous density. In particular, no singular continuous part is present.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.