Abstract

In Traversa and Di Ventra [Chaos 27, 023107 (2017)] we argued, without proof, that if the non-linear dynamical systems with memory describing the class of digital memcomputing machines (DMMs) have equilibrium points, then no periodic orbits can emerge. In fact, the proof of such a statement is a simple corollary of a theorem already demonstrated in Traversa and Di Ventra [Chaos 27, 023107 (2017)]. Here, we point out how to derive such a conclusion. Incidentally, the same demonstration implies absence of chaos, a result we have already demonstrated in Di Ventra and Traversa [Phys. Lett. A 381, 3255 (2017)] using topology. These results, together with those in Traversa and Di Ventra [Chaos 27, 023107 (2017)], guarantee that if the Boolean problem the DMMs are designed to solve has a solution, the system will always find it, irrespective of the initial conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.