Abstract

Au-induced atomic wires on the Ge(001) surface were recently claimed to be an ideal one-dimensional (1D) metal and their tunneling spectra were analyzed as the manifestation of a Tomonaga-Luttinger liquid (TLL) state. We reinvestigate this system for atomically well-ordered areas of the surface with high-resolution scanning tunneling microscopy and spectroscopy (STS). The local density-of-states maps do not provide any evidence of a metallic 1D electron channel along the wires. Moreover, the atomically resolved tunneling spectra near the Fermi energy are dominated by local density-of-states features, deviating qualitatively from the power-law behavior. On the other hand, the defects strongly affect the tunneling spectra near the Fermi level. These results do not support the possibility of a TLL state for this system. A 1D metallic system with well-defined 1D bands and without defects are required for the STS study of a TLL state.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.