Abstract

Consider a finite collection $\{T_1, \ldots, T_J\}$ of differential operators with constant coefficients on $\mathbb{T}^n$ ($n\geq 2$) and the space of smooth functions generated by this collection, namely, the space of functions $f$ such that $T_j f \in C(\mathbb{T}^n)$, $1\leq j\leq J$. We prove that if there are at least two linearly independent operators among their senior parts (relative to some mixed pattern of homogeneity), then this space does not have local unconditional structure. This fact generalizes the previously known result that such spaces are not isomorphic to a complemented subspace of $C(S)$

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.