Abstract

The common genetic deficiency of drug oxidation known as debrisoquine/sparteine-type polymorphism was investigated with bufuralol as prototype substrate. In human liver microsomes the 1'-hydroxylation of bufuralol is catalyzed by two functionally distinct P-450 isozymes, the high-affinity/highly stereoselective P450bufI and the low-affinity/nonstereoselective P450bufII. We demonstrate that P450bufI is unique in hydroxylating bufuralol in a cumene hydroperoxide (CuOOH) mediated reaction whereas P450bufII is active only in the classical NADPH- and O2-supported monooxygenation. In microsomes of liver biopsies of in vivo phenotyped poor metabolizers of debrisoquine or sparteine, the CuOOH-mediated activity was drastically reduced. Rabbit antibodies against a rat P-450 isozyme with high bufuralol 1'-hydroxylase activity (P450db1) precipitated exclusively P450bufI-type activity from solubilized microsomes. Western blotting of microsomes with these antibodies revealed a close correlation between the immunoreactive protein and CuOOH-mediated (+)-bufuralol 1'-hydroxylation. No immunoreactive protein was detected in liver microsomes of in vivo phenotyped poor metabolizers. These data provide evidence for a specific deficiency of P450bufI and are consistent with the complete or almost complete absence of this protein in the liver of poor metabolizers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.