Abstract

Prior experimental work had found that the Fermi level at InN growth surfaces is pinned well above the conduction band edge, leading to strong surface band bending and electron accumulation. Using cross-sectional scanning photoelectron microscopy and spectroscopy, we show definitive evidence of unpinned Fermi level for in situ cleaved a-plane InN surfaces. To confirm the presence or absence of band bending, the surface Fermi level relative to the valence band edge was precisely measured by using both the Fermi edge of Au reference sample and the core level of ultrathin Au overlayer. It is confirmed that flat surface bands only occur at cleaved nonpolar surfaces, consistent with the recent theoretical predictions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.