Abstract

We construct the one-dimensional analogous of von-Neumann Wigner potential to the relativistic Klein-Gordon operator, in which is defined taking asymptotic mathematical rules in order to obtain existence conditions of eigenvalues embedded in the continuous spectrum. Using our constructed potential, we provide an explicit and analytical example of the Klein-Gordon operator with positive eigenvalues embedded in the so called relativistic region. Even so in this not standard example, we present the region of the continuum where those eigenvalues cannot occur. Besides, the absence of eigenvalues in the continuous spectrum for Klein-Gordon operators is proven to a broad general potential classes, including the minimally coupled electric Coulomb potential. Considering known techniques available in literature for Schrodinger operators, we demonstrate an expression for Klein-Gordon operator written in Schrodinger's form, whereby is determined the mathematical spectrum region of absence of eigenvalues.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.