Abstract

Solutions of microgels have been widely used as model systems to gain insight into atomic condensed matter and complex fluids. We explore the thermodynamic phase behavior of hollow microgels, which are distinguished from conventional colloids by a central cavity. Small-angle neutron and x-ray scattering are used to probe hollow microgels in crowded environments. These measurements reveal an interplay among deswelling, interpenetration, and faceting and an unusual absence of crystals. Monte Carlo simulations of model systems confirm that, due to the cavity, solutions of hollow microgels more readily form a supercooled liquid than for microgels with a cross-linked core.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.