Abstract

The chemokine Mip3alpha is specifically expressed by the follicle-associated epithelia (FAE) covering intestinal Peyer's patches (PPs) and is the only known chemokine ligand for the chemokine receptor CCR6. Although CCR6-deficient mice are known to have a perturbed intestinal immune system, little is known about the specific impact of this interaction for Peyer's patch formation. To elucidate the effect of Mip3alpha on PP lymphocyte development, we used a CCR6/enhanced green fluorescent protein (EGFP) knock-in mouse model and analyzed lymphocyte development by immunohistochemistry and flow cytometry. PPs of CCR6-/- mice were significantly size-reduced with a proportional loss of B cells and T cells, whereas T-cell subsets were disturbed with a decreased CD4/CD8 ratio paralleled with a loss of regulatory CD4+ CD45Rb(low) T cells. The analysis of cytokine production by CCR6-expressing cells could demonstrate that CCR6 is involved in the regulation of cytokine secretion such as interleukin-12 by dendritic cells. Quantification of UEA-1+ cells inside the FAE showed reduced M-cell numbers in CCR6-deficient mice. These results suggest that the interaction of CCR6 with its ligand Mip3alpha is important for immune responses generated inside the PPs, particularly for the generation of regulatory CD4+ T cells residing inside PPs and for the formation of M cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.