Abstract

The growth process of silicon carbide crystals by physical vapor transport (PVT) on Si-face (0001) on-axis 6H-SiC substrates was analyzed. The growth rate was observed to be almost inversely proportional to the deposition pressure (R ∝ p-1) meaning that the growth rate is not limited by the number of growth spirals but by the vapor phase transport of the depositing species from the source to the sample surface. Analysis of the spiral step width shows an inverse square root dependence on the growth rate (y0 ∝ R-½). This experimental result is in accordance with the Burton, Cabrera and Frank theory and hence it can be concluded that there is no back-stress effect present.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call