Abstract
GAD is a major islet cell autoantigen in human type 1 diabetes mellitus. Autoantibodies are preferentially directed against the 65-kD isoform of the enzyme which is the only form expressed in human islets of Langerhans. The NOD mouse is a spontaneous model of type 1 diabetes, frequently employed in studies dealing with the immunopathogenesis of the disease. In the present study the reactivity of sera from 34 prediabetic and 15 diabetic NOD mice was tested against GAD protein present in islets of Langerhans and cerebellum, and against recombinant, semi-purified GAD-65 and GAD-67. A rabbit antiserum (K2) raised against GAD-67 could readily recognize the recombinant GAD-67 and the isoform present in rat and mouse islets and mouse brain. A MoAb (GAD-6) specific for the GAD-65 isoform reacted against the recombinant GAD-65 and the isoform present in rat islets and mouse brain, whereas no reactivity was observed when using mouse islets. However, when testing the NOD mice sera by immunohistochemistry, immunoprecipitation and Western blot, no reactivity against any of the isoforms of GAD could be detected. Using reverse transcription polymerase chain reaction (PCR), GAD-67 mRNA could be detected in mouse and rat islets and in mouse brain. GAD-65 mRNA could also be detected in rat islets and mouse brain, but apparently a much lower copy number is present in mouse islets. These findings stress important differences in the immune response occurring in the animal model NOD mouse compared with human type 1 diabetes, and emphasize that human and animal type 1 diabetes possibly represent the final outcome of several different etiological factors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.