Abstract

The goal of this study was to pharmacologically block central nervous system (CNS) input to gonadotropes in mature ovariectomized gilts to determine the direct actions of estradiol (E2) on pituitary LH release when given at a dose sufficient to elicit a gonadotropin surge. Feeding AIMAX [N-methyl-N'-(1-methyl-2-propenyl)1,2-hydrazinedicarbothioamide; 125 mg/day] for 7 days reduced serum LH concentrations from 1.25 +/- 0.13 (mean +/- SE) to less than 0.18 ng/ml, abolished LH pulses, but did not compromise LH release in response to exogenous GnRH. Serum FSH concentrations were reduced by 27%, whereas serum concentrations of PRL, GH, thyroid hormones and cortisol were not affected after 7 days of AIMAX treatment. Behavior was not altered, aside from a slightly reduced appetite. The LH surge that peaked 48-80 h after injecting E2 benzoate (E2B) into control gilts was blocked in five of eight gilts given AIMAX. Giving GnRH pulses (1 microgram every 45 min) to AIMAX-treated gilts restored mean serum LH concentrations as well as the frequency and amplitude of LH pulses to those of untreated ovariectomized gilts. E2B suppressed the LH response to these GnRH pulses by 88% at 12 h, whereas from 24-96 h after E2B treatment, the LH response to GnRH and mean serum concentrations of LH were again similar to those of controls not given estradiol. These data indicate that induction of the gonadotropin surge by E2 in the gilt requires CNS input. The action of E2 on the pituitary in the presence of unvarying GnRH pulsation may, however, be limited to an early transient inhibition of responsiveness to GnRH, with no subsequent direct stimulation during the period of the surge.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call