Abstract

There is growing interest in radio frequency identification (RFID) technology application for tracking blood products to achieve higher productivity and safety in the transfusion medicine supply chain. We have conducted a limited study to assess the temperature and biological effects of 13.56 MHz RF radiation on RBCs and whole blood-derived platelets (WBDP) under extreme exposure conditions. Using an FDA-approved protocol, test units of both RBC and WBDP were subjected to approximately 100 watts of RF energy for an extended duration (23-25 h) to assess worst-case effects. Three replications of the test were performed. Hemolysis after 23-25 hours of RF energy exposure was 0.09% and 0.05%, respectively, for TEST and CONTROL RBC units and well within the ≤1% limit in the FDA-approved acceptance criteria. For WBDP units, the mean pH of TEST and CONTROL units were 7.27 and 7.19, respectively, following 23-25 hours of RF energy exposure, and well above the ≥6.2 acceptance limit. Further, there was no detectable acceleration in cellular degradation of RBC and WBDP products. While there was minimal temperature rise, the relative temperature increase between TEST and CONTROL units never exceeded the 1.5°C acceptance criterion. 13.56 MHz-based RFID technology is unlikely to have any significant temperature or biological effects on RBC and WBDP units under the normal operating conditions (a maximum of 4 watts RF power exposure for about 20 nonconsecutive minutes for RFID tracking during the life of the blood product).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.