Abstract
Using the whole-cell patch-clamp technique, we investigated developmental changes in the expression of an acetylcholine- (Ach-) activated Cl- conductance in rat submandibular acinar cells. ACh induced an oscillatory inward current in cells isolated from animals older than 5 weeks, but not in animals less than 2-3 weeks of age. The current/voltage (I/V) relationship of the ACh-induced current was that of an outward rectifier, and the current was inhibited by intracellular BAPTA, a Ca2+ buffer, indicating the current was Ca2+ activated. The ACh-induced current was also blocked in the presence of DPC and SITS, two Cl- current inhibitors in other tissues. Ionomycin mimicked the effect of ACh but in a nonoscillatory fashion. The appearance of the ionomycin-induced currents was also age related, as the current was not observed to occur in animals less than 2-3 weeks old. Since both ACh and ionomycin significantly increase cytosolic [Ca2+] in the acinar cells of young animals, the correlation between the age dependence of the ACh-activated Cl- current and the ionomycin-activated Cl- current responses suggests that the lack of responsiveness observed in the young animals is due to the absence of Ca2+-activated Cl- channels, rather than to a deficiency of a cellular mediator.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.