Abstract

We investigated the failure of 2-PAM to protect honey bees against poisoning with paraoxon. The protective effect of the oxime 2-PAM against inhibition of acetylcholinesterase (AChE) by paraoxon was estimatedin vitroandin vivoand was correlated with the mortality of paraoxon-treated bees.In vitro,2-PAM protected 90% of AChE activity in the presence of paraoxon and reactivated more than 90% of inhibited AChE. Minor soluble and major membrane-bound forms of bee AChE presented about similar extents of reactivation, but the first order rate constant of reactivation (kobs) of the soluble form is threefold higher than that of the membrane-bound form. However, this difference did not significantly influence the reactivation kinetics of total AChE; the constantkobsof the membrane-bound form reflected that of total AChE. The linear kinetic profile of total AChE reactivation supported the conclusion that there was a single population of reactivatable species. The bimolecular rate constant of reactivation (kr), the dephosphorylation rate constant (k2), and the dissociation constant (Kd) were 646 M−1.min−1, 0.84 min−1and 1.30 mM, respectively.In vivo,administration of 2-PAM, after paraoxon exposure, induced a complete protection of AChE activity, but did not elicit any significant effect on mortality in paraoxon-treated bees. The inefficiency of 2-PAM to antagonize paraoxon-induced mortality was not changed by the administration of 2-PAM in pretreatment-therapy and in therapy treatments. These results indicated that the mortality of paraoxon-poisoned honey bees was not due to a lack of AChE reactivation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call