Abstract

The restrictions of analyticity, relativistic (Born) rigidity, and negligible O(a) terms involved in the evaluation of the self-electromagnetic force on an extended charged sphere of radius a are explicitly revealed and taken into account in order to obtain a classical equation of motion of the extended charge that is both causal and conserves momentum-energy. Because the power-series expansion used in the evaluation of the self-force becomes invalid during transition time intervals immediately following the application and termination of an otherwise analytic externally applied force, a transition force must be included during each of these two transition time intervals to remove the noncausal pre-acceleration and pre-deceleration from the solution to the equation of motion without the transition forces. Although the exact time dependence of each transition force is not known, the effect of each transition force on the solution to the equation of motion can be determined to within a single unknown constant, namely the change in velocity of the charge across the transition interval. For the extended charged sphere, the changes in velocity across the transition intervals can be chosen to maintain conservation of momentum-energy in the causal solutions to the equation of motion within the restrictions of relativistic rigidity and negligible O(a) terms under which the equation of motion is derived. However, regardless of the values chosen for the changes in the velocity across the transition intervals, renormalization of the electrostatic mass to a finite value as the radius of the charge approaches zero introduces a violation of momentum-energy conservation into the causal solutions to the equation of motion of the point charge if the magnitude of the external force becomes too large. That is, the causal classical equation of motion of a point charge with renormalized mass experiences a high acceleration catastrophe.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.