Abstract

Loss-of-function mutations in the common gamma (γc) chain cytokine receptor subunit give rise to severe combined immunodeficiency characterized by lack of T and natural killer cells and infant death from infection. Hematopoietic stem cell transplantation or gene therapy offer a cure, but despite successful replacement of lymphoid immune lineages, a long-term risk of severe cutaneous human papilloma virus infections persists, possibly related to persistent γc-deficiency in other cell types. Here we show that keratinocytes, the only cell type directly infected by human papilloma virus, express functional γc and its co-receptors. After stimulation with the γc-ligand IL-15, γc-deficient keratinocytes show significantly impaired secretion of specific chemokines including CXCL1, CXCL8, and CCL20, resulting in reduced chemotaxis of dendritic cells and CD4+ T cells. Furthermore, γc-deficient keratinocytes also exhibit defective induction of T-cell chemotaxis in a model of stable human papilloma virus-18 infection. These findings suggest that persistent γc-deficiency in keratinocytes alters immune cell recruitment to the skin, which may contribute to the development and persistence of warts in this condition and would require different treatment approaches.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call