Abstract

Previous results indicate that nanomolar concentrations of abscisic acid (ABA) stimulate insulin release from β-pancreatic cells in vitro and that oral ABA at 50mg/kg increases plasma GLP-1 in the fasted rat. The aim of this study was to test the effect of ABA on the perfused rat pancreas and intestine, to verify the insulin- and incretin-releasing actions of ABA in controlled physiological models. Rat pancreas and small intestine were perfused with solutions containing ABA at high-micromolar concentrations, or control secretagogues. Insulin and GLP-1 concentrations in the venous effluent were analysed by radioimmunoassay, and ABA levels were determined by ELISA. High micromolar concentrations of ABA induced GLP-1 secretion from the proximal half of the small intestine and insulin secretion from pancreas. GLP-1 stimulated ABA secretion from pancreas in a biphasic manner. Notably, a positive correlation was found between the ABA area under the curve (AUC) and the insulin AUC upon GLP-1 administration. Our results indicate the existence of a cross talk between GLP-1 and ABA, whereby ABA stimulates GLP-1 secretion, and vice versa. Release of ABA could be considered as a new promising molecule in the strategy of type 2 diabetes treatment and as a new endogenous hormone in the regulation of glycaemia.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call