Abstract

The plant root system is important for plant anchorage and nutrition. Among the different characteristics of the root system, root branching is a major factor of plasticity and adaptation to changing environments. Indeed, many biotic and abiotic stresses, such as drought or symbiotic interactions, influence root branching. Many studies concerning root development and root branching were performed on the model plant Arabidopsis thaliana, but this model plant has a very simplified root structure and is not able to establish any symbiotic interactions. We have recently described 7 stages for lateral root development in the model legume Medicago truncatula and found significant differences in the tissular contribution of root cell layers to the formation of new lateral roots (LR). We have also described 2 transgenic lines expressing the DR5:GUS and DR5:VENUS-N7 reporter genes that are useful to follow LR formation at early developmental stages. Here, we describe the use of these transgenic lines to monitor LR developmental responses of M. truncatula to the phytohormone abscisic acid (ABA) which is a major actor of stress and symbiotic interactions. We show that ABA promotes the formation of new lateral root primordia and their development, mostly at the late, pre-emergence stage.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call