Abstract

During harvest, fleshy berry tomato fruits (Solanum lycopersicum) were wounded at their stem scar. Within 3 d, this wound was rapidly sealed by a process covering the wound site with a membranous layer which effectively protects the tomato fruit from excessive water loss, nutrient elution and the entry of pathogens. Chemical analysis of the de novo synthesized stem scar tissue revealed the presence of aromatic and aliphatic components characteristic of the biopolyester suberin. Gene expression patterns associated with suberization were identified at the stem scar region. Changes in the relative abundance of different transcripts suggested a potential involvement of the plant hormone abscisic acid (ABA) in the wound-healing processes. The amount of ABA present in the stem scar tissue showed a significantly increased level during wound healing, whereas ABA-deficient mutants notabilis, flacca and sitiens were largely devoid of this rise in ABA levels. The mutant fruits showed a retarded and less efficient suberization response at the stem scar wound, whereas the rate and strength of this response were positively correlated with ABA content. These results clearly indicate in vivo the involvement of ABA in the suberization-based wound-healing processes at the stem scar tissue of tomato fruits.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.