Abstract

Drought stress represents a particularly great environmental challenge for plants. A decreased water availability can severely limit growth, and this jeopardizes the organism’s primary goal – to survive and sustain growth long enough to ensure the plentiful production of viable seeds within the favourable growth season. It is therefore vital for a growing plant to sense oncoming drought as early as possible, and to respond to it rapidly and appropriately in all organs. A typical, fast energy-saving response is the arrest of growth in young organs, which is likely mediated by root-derived signals. A recent publication indicates that three plant hormones (abscisic acid, ethylene and gibberellic acid) mediate the adaptation of leaf growth in response to drought, and that they act at different developmental stages. Abscisic acid mainly acts in mature cells, while ethylene and gibberellic acid function in expanding and dividing leaf cells. This provides the plant with a means to differentially control the developmental zones of a growing leaf, and to integrate environmental signals differently in sink and source tissues. Here we discuss the biological implications of this discovery in the context of long-distance xylem and phloem transport.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.