Abstract

Abscisic acid (ABA) is a sesquiterpene signaling molecule produced in all kingdoms of life. To date, the best known functions of ABA are derived from its role as a major phytohormone in plant abiotic stress resistance. Different organisms have developed different biosynthesis and signal transduction pathways related to ABA. Despite this, there are also intriguing common themes where ABA often suppresses host immune responses and is utilized by pathogens as an effector molecule. ABA also seems to play an important role in compatible mutualistic interactions such as mycorrhiza and rhizosphere bacteria with plants, and possibly also the animal gut microbiome. The frequent use of ABA in inter-species communication could be a possible reason for the wide distribution and re-invention of ABA as a signaling molecule in different organisms. In humans and animal models, it has been shown that ABA treatment or nutrient-derived ABA is beneficial in inflammatory diseases like colitis and type 2 diabetes, which confer potential to ABA as an interesting nutraceutical or pharmacognostic drug. The anti-inflammatory activity, cellular metabolic reprogramming, and other beneficial physiological and psychological effects of ABA treatment in humans and animal models has sparked an interest in this molecule and its signaling pathway as a novel pharmacological target. In contrast to plants, however, very little is known about the ABA biosynthesis and signaling in other organisms. Genes, tools and knowledge about ABA from plant sciences and studies of phytopathogenic fungi might benefit biomedical studies on the physiological role of endogenously generated ABA in humans.

Highlights

  • Abscisic acid (ABA) is best known as a phytohormone regulating abiotic stress responses in plants, but ABA biosynthesis has been observed in a phylogenetically wide range of organisms (Hartung, 2010), ranging from cultured cyanobacteria (Maršálek et al, 1992) to human cells (Bruzzone et al, 2007)

  • Commonalities in ABA response between cells from diverse organism classes have been observed (Huddart et al, 1986), this evolutionary ancient signaling molecule shows several kingdom-specific features in both biosynthesis and signaling (Hirai et al, 2000; Hauser et al, 2011). It is not known why this particular molecule is produced by so many different types of organisms and why so many different types of organisms respond to ABA

  • In addition to endogenous biosynthesis, humans and other animals will have a constant exposure of ABA from nutritional sources, and there are indications that a high ABA diet can have beneficial physiological effects (Magnone et al, 2015)

Read more

Summary

Introduction

Abscisic acid (ABA) is best known as a phytohormone regulating abiotic stress responses in plants, but ABA biosynthesis has been observed in a phylogenetically wide range of organisms (Hartung, 2010), ranging from cultured cyanobacteria (Maršálek et al, 1992) to human cells (Bruzzone et al, 2007). We will explore the possibilities to utilize genes and tools from plants and phytopathogenic fungi for functional evaluation of the role of ABA in animals.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.