Abstract

The performance of Anti-lock Brake Systems (ABS) for vehicles deteriorate on rough terrains, due to fluctuations in the angular wheel speeds and in the vertical loading conditions of the tyre caused by the terrain inputs.In this paper, ABS braking performance on non-deformable rough terrain is investigated by performing experiments and simulations using a testing trailer and a validated multi-body dynamics model. The trailer was constructed using a Land Rover Defender chassis and installed with standard Land Rover braking components including an ABS modulator. It was found in the ABS tests performed, while using a standard Bosch ABS algorithm, that the ABS algorithm failed to perform optimally due to oscillations and irregularities that were present in the measurement of angular wheel speeds. Good correlation is found between the tyre forces measured and the forces simulated using an FTire model in MSC ADAMS software. A powerful platform was created for future off-road ABS investigation and development using both experiments and a simulation platform.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.