Abstract

Diabetes mellitus, linked with insulin resistance and hyperglycaemia, is a leading cause of mortality. Glucose uptake through glucose transporter type 4, especially in skeletal muscle, is crucial for maintaining euglycaemia and is a key pathway targeted by antidiabetic medication. Abrus precatorius is a medicinal plant with demonstrated antihyperglycaemic activity in animal models, but its mechanisms are unclear.This study evaluated the effect of a 50% ethanolic (v/v) A.precatorius leaf extract on (1) insulin-stimulated glucose uptake and (2) related gene expression in differentiated C2C12 myotubes using rosiglitazone as a positive control, and (3) generated a comprehensive phytochemical profile of A.precatorius leaf extract using liquid chromatography-high resolution mass spectrometry to elucidate its antidiabetic compounds. A.precatorius leaf extract significantly increased insulin-stimulated glucose uptake, and insulin receptor substrate 1 and Akt substrate of 160 kDa gene expression; however, it had no effect on glucose transporter type 4 gene expression. At 250 µg/mL A.precatorius leaf extract, the increase in glucose uptake was significantly higher than 1 µM rosiglitazone. Fifty-five phytochemicals (primarily polyphenols, triterpenoids, saponins, and alkaloids) were putatively identified, including 24 that have not previously been reported from A.precatorius leaves. Abrusin, precatorin I, glycyrrhizin, hemiphloin, isohemiphloin, hispidulin 4'-O-β-D-glucopyranoside, homoplantaginin, and cirsimaritin were putatively identified as known major compounds previously reported from A.precatorius leaf extract. A.precatorius leaves contain antidiabetic phytochemicals and enhance insulin-stimulated glucose uptake in myotubes via the protein kinase B/phosphoinositide 3-kinase pathway by regulating insulin receptor substrate 1 and Akt substrate of 160 kDa gene expression. Therefore, A.precatorius leaves may improve skeletal muscle insulin sensitivity and hyperglycaemia. Additionally, it is a valuable source of bioactive phytochemicals with potential therapeutic use for diabetes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call